Publications in peer-reviewed journals

  1. Lubuma, M.-S. 1987. Comportement des coefficients de Fourier de la solution d’un problème de Dirichlet à domaine polygonal. Annales de la Société Scientifique de Bruxelles. Vol. 99 No. II-III, 97-114. MR 88h: 35032, Zbl. Math. 635.35019.
  2. Lubuma, M.-S. 1987. Opérateur intégral de Neumann pour le Laplacien à frontière non lisse. Bulletin de la Société Mathématique de Belgique, Vol. 39B No. 2, 215-236. MR 88i: 31003, Zbl. Math. 633.45004.
  3. Dauge, M.; Lubuma, M.-S. and Nicaise, S. 1987. Coefficients des singularités pour le problème de Dirichlet sur un polygone. Comptes Rendus de l’Académie des Sciences de Paris Série I Sciences Mathématiques. Vol. 304 No. 16, 483-486. MR 88f: 35038, Zbl. Math. 619.35033.
  4. Lubuma, M.-S. and Taleb, A. 1989. Méthode de projection pour le problème de Stokes sur un polygone. Les Annales de l’Ecole Nationale des Ingénieurs de Tunis. Vol. 3 No. 1, 31-42.
  5. Bourlard, M.; Dauge, M.; Lubuma, M.-S.; and Nicaise, S. 1990. Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques I: Résultats généraux pour le problème de Dirichlet. Modélisation Mathématique et Analyse Numérique. Vol. 24 No. 1, 27-52. MR 91b: 35032.
  6. Bourlard, M.; Dauge, M.; Lubuma, M.-S.; and Nicaise, S. 1990. Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques II: Quelques Opérateurs particuliers. Modélisation Mathématique et Analyse Numérique. Vol. 24 No. 3, 343-367. MR. 91g: 35010.
  7. Lubuma, M.-S. 1990. Méthode variationnelle et équations intégrales pour le problème de Stokes. Cahiers Mathématiques, Université d’Oran. Vol. 2, 17 pages.
  8. Chettab, M. and Lubuma, M.-S. 1991. Coefficients of singularities and mixed methods for the mixed Dirichlet-Neumann problem for the Stokes operator on a polygon. Journal of Computational and Applied Mathematics. Vol. 35, 139-157. Zbl. Math. 728.65101.
  9. Bourlard, M.; Dauge, M.; Lubuma, M.-S. and Nicaise, S. 1992. Coefficients of the singularities for elliptic boundary value problems on domains with conical points III: Finite element methods on polygonal domains. SIAM Journal on Numerical Analysis. Vol. 29 No. 1, 136-155. MR 93a: 65146.
  10. Lubuma, J.M.-S. and Nicaise, S. 1992.  Méthodes d’éléments finis raffinés pour le problème de Dirichlet dans un polyèdre. Comptes Rendus de l’Académie des Sciences de Paris Série I Sciences Mathématiques. Vol. 315, 1207-1210. MR 94a: 65058, Zbl. Math. 782.65134.
  11. Chidume, C and Lubuma, J.M.-S. 1992. Solution of the Stokes system by boundary integral equations and fixed point iterative schemes. Journal of the Nigerian Mathematical Society, Vol. 11 No. 3, 1-17. MR 95m: 65205.
  12. Lubuma, J.M.-S. 1993. Error estimates in projective solutions of the Radon equation. Journal of Computational and Applied Mathematics. Vol. 45, 309-319. MR 94g: 31003, Zbl. Math. 771.65094.
  13. Lubuma, J.M.-S. 1993. Classical solutions of two-dimensional Stokes problems on non smooth domains I: The Radon integral operators. Mathematical Methods in the Applied Sciences. Vol. 16 No. 9, 643–664. MR 94j:35130, Zbl. Math. 787.65086.
  14. Lubuma, J.M.-S. 1993. Classical solutions of two-dimensional Stokes problems on non smooth domains II: Collocation method for the Radon equation, Mathematical Methods in the Applied Sciences. Vol. 16 No. 9, 665-679. MR 94j: 35131, Zbl. Math. 787.65087.
  15. Lubuma, J.M.-S. and Nicaise, S. 1994. Dirichlet problems in polyhedral domains I: Regularity of solutions. Mathematische Nachrichten. Vol. 168, 243-261. MR 95h:35061.  Zbl. Math. 0844.35014.
  16. Lubuma, J.M.-S. and Nicaise, S. 1994. Méthode de fonctions singulières pour problèmes aux limites avec singularités d’arêtes. Comptes Rendus de l’Académie des Sciences de Paris Série I Sciences Mathématiques. Vol. 319, 1109-1114. MR 95h: 65066.
  17. Lubuma, J.M.-S. and Nicaise, S. 1995. Dirichlet problems in polyhedral domains II: Approximation by FEM and BEM. Journal of Computational and Applied Mathematics, Vol. 61, 13-27. MR 96k: 65073. Zbl. Math. 0840.65110.
  18. Lubuma, J.M.-S. and Nicaise, S. 1999. Finite element method for elliptic problems with edge singularities, Journal of Computational and Applied Mathematics, Vol. 106, 145-168, MR 2000j:65115.
  19. Lubuma, J.M.-S. and Nicaise, S. 2000. Edge behaviour of the solution of the Stokes problem with applications to the finite element methods, Proceedings of the Royal Society of Edinburgh, Vol. 130A, 107-140. MR2001b:35245. Zbl. Math. 0936.65130.
  20. Lubuma, J.M.-S., Nicaise, S. and Paquet, L. 2000. Integral equations for elliptic problems with edge singularities with applications to the Fourier boundary element method, Numerical Functional Analysis and Optimization, Vol. 21, 743-779. MR 2001f:65144. Zbl. Math. 0984.35055.
  21. Anguelov, R. and Lubuma, J.M.-S. 2001. Contributions to the mathematics of the nonstandard finite difference method and applications, Numerical Methods for Partial Differential Equations, Vol. 17, 518-543. MR 1849163 (2002e:65104). Zbl. Math. 0988.65055.
  22. Anguelov, R. and Lubuma, J.M.-S. 2003. Nonstandard finite difference method by nonlocal approximation, Mathematics and Computers in Simulation, Vol. 61, 465-475. MR 1984145. Zbl. Math. 1015.65034.
  23. Anguelov, R., Lubuma, J.M.-S. and Mahudu, KS 2003. Qualitatively stable finite difference schemes for advection reaction equations, Journal of Computational and Applied Mathematics. Vol. 158, 19-30. MR 2013601 (2004k:65127). Zbl. Math. 1040.65074.
  24. Lubuma, J.M.-S. and Roux, A. 2003. An improved theta method for systems of ordinary differential equations, Journal of Difference Equations and Applications. Vol. 9, 1023-1035. MR 202165 (2004i:65055). Zbl. Math. 1042.65059.
  25. Anguelov, R., Kama, P. and Lubuma, J.M.-S. 2005. On non-standard finite difference models of reaction-diffusion equations, Journal of Computational and Applied Mathematics, Vol. 175, 11-29. MR2105666 (2005k:65163).
  26. Dumont, Y. and Lubuma, J.M.-S. 2005. Non-Standard finite-difference methods for vibro-impact problems, Proceedings of the Royal Society of London, Series A:  Mathematical, Physical and Engineering Sciences. Vol. 461, 1927-1950. MR 2152572 (2006a:70002).
  27. Lubuma, J.M.-S. and Patidar, K.C. 2006. Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems, Journal of Computational and Applied Mathematics, Vol 191, 228-238.  MR2219927 (2006k:65194).
  28. Dumont, Y and Lubuma, J.M-S. 2007. Non-standard finite difference schemes for multi-dimensional second-order systems in nonsmooth mechanics, Mathematical Methods in Applied Sciences, Vol. 30, 789-825. MR 2310554 (2008a:70005) (http://dx.doi.org/1002/mma.811). 
  29. Lubuma, J.M.-S. and Patidar, K.C. 2007, Non-standard finite difference methods for singularly perturbed problems possessing oscillatory/layer solutions, Applied Mathematics and Computation, Vol. 187, 1147-1160. MR 2321319 (http://dx.doi.org/10.1016/j.amc.2006.09.011).
  30. Lubuma, J.M.-S. and Patidar, K.C. 2007. Solving singularly perturbed advection reaction equation via non-standard finite difference methods, Mathematical Methods in the Applied Sciences, Vol 30, 1627-1637. MR 2350603 (2008f:35233) (http://dx.doi.org/10.1002/mma.858). 
  31. Lubuma, J.M.-S. and Patidar, K.C. 2007. ε-Uniform non-standard finite difference methods for nonlinear singularly perturbed boundary-value problems, Advances in Mathematical Sciences and Applications,  Vol 17, 651-665. MR2374144 (2009b:65186)
  32. Anguelov, R., Djoko, J.K. and Lubuma, J.M.-S. 2008. Energy properties preserving finite difference schemes for the Burger’s equation, Numerical Methods for Partial Differential Equations, Vol. 24, 41-59. MR 2371347 (2008k:65159) (http://dx.doi.org/10.1002/num20227).
  33. Lubuma, J.M.-S. 2008.  Fourier series and integral equation method for the exterior Stokes problem, Numerical Methods for Partial Differential Equations, Vol. 24, 699-727, MR 2402570 (2009e:76052) (http://dx.doi.org/10.1002/num20273).
  34. Lubuma, J.M.-S. and Patidar, K.C. 2009. Reliable finite element methods for self-adjoint singular perturbation problems, Quaestiones Mathematicae-Journal of the South African Mathematical Society, Vol. 32 (3), 397-413. MR2569097
  35. Lubuma, J.M.-S. and Patidar, K.C. 2009. Towards the implementation of the singular function method for the singular perturbation problem, Applied Mathematics and Computation, Vol. 209, 68-74. MR2493287 (http://dx.doi.org/10.1016/j.amc.2008.06.026).   
  36. Anguelov, R., Lubuma, J.M.-S. and Minani, F. 2010. Total variation diminishing non-standard finite difference schemes for conservation law, Mathematical and Computer Modelling, Vol. 51, 160-166. MR 2580057 (2011c:65148). (http://dx.doi.org/10.1016/j.mcm.2009.08.038). 
  37. Anguelov, R., Lubuma, J.M.-S. and Minani F. 2010. A monotone scheme for Hamilton-Jacobi equations via the non-standard finite difference method. Mathematical Methods in Applied Sciences, Vol. 33, 41-48.  MR 2591222 (2011a:65311). (http://dx.doi.org/10.1002/mma.1148). 
  38. Chin P.M, Djoko, J.K. and Lubuma, J.M.-S. 2010. Reliable numerical schemes for a linear diffusion equation on a nonsmooth domain, Applied Mathematics Letters, Vol. 23, 544-548. MR 2602406 (2011c:65157). (http://dx.doi.org/10.1016/j.aml.2010.01.008).
  39. Anguelov, R., Lubuma, J.M.-S. and Shillor, M. 2011, Topological dynamic consistency of non-standard finite difference schemes for dynamical systems, J. of Differ. Equat. & Applications, Vol 17, 1769-1791. MR 2854823 (http://dx.doi.org/10.1080/10236198.2010.488226). 
  40. Garba, S.M., Gumel, A.B. and Lubuma J.M.-S. 2011, Dynamically consistent nonstandard finite difference method for an epidemic model, Mathematical and Computer Modelling, Vol. 53, 131-150. MR 2739251 (2011j:92058). (http://dx.doi.org/10.1016/j.mcm.2010.07.026).
  41. Chapwanya, M., Lubuma, J-M.S. and Mickens, R.  2012, From enzyme kinetics to epidemiological models with Michaelis-Menten contact rate: Design of nonstandard finite difference schemes, Computers and Mathematics with Applications, Vol. 64, 201-213 MR 2944803 (http://dx.doi.org/10.1016/j.camwa.2011.12.058).
  42. Anguelov, R,  Dumont, Y and  Lubuma, JM-S  2012, Mathematical modeling of sterile insect technology for control of anopheles mosquitoes, Computers and Mathematics with Applications, Vol. 64, 374-389. MR 2944818. (http://dx.doi.org/10.1016/j.camwa.2012.02.068).
  43. Chapwanya, M., Lubuma, J.M.-S. and Mickens, R.E. 2013, Nonstandard finite difference schemes for Michaelis-Menten type reaction diffusion equations, Numerical Methods for Partial Differential Equations, Vol. 29, 337-360. MR 3003114. (http://dx.doi.org/10.1002/num.21733).
  44. Anguelov, R., Dumont, Y., Lubuma, J.M.-S. and Mureithi, M. 2013, Stability analysis and dynamics preserving nonstandard finite difference schemes for a malaria model, Mathematical Population Studies: An International Journal of Mathematical Demography, Vol. 20, 101-122. MR 3054464. (http://dx.doi.org/10.1080/08898480.2013.777240).
  45. Anguelov, R., Dumont, Y., Lubuma, J.M.-S. and Shillor, M. 2014, Dynamically consistent nonstandard finite difference schemes for epidemiological models, J. Computational and Applied Mathematics,  Vol. 255, 161-182.  MR 3093413. (http://dx.doi.org/10.1016/j.cam.2013.04.042).
  46. Hassan, AS;  Garba, SM;  Gumel, AB  and Lubuma, JM-S 2014, Dynamics of mycobacterium    and bovine tuberculosis in human-buffalo populations, Computational & Mathematical  Methods in Medicine, Vol. 2014, Article ID 912306, 20 pages.  (http://dx.doi.org/10.1155/2014/912306).
  47.   Chapwanya, M; Lubuma, JM-S and Mickens, RE. 2014, Positivity-preserving nonstandard  finite difference schemes for cross-diffusion equations in biosciences, Computers &Mathematics with Applications, Vol. 68, 1071-1082.  (http://dx.doi.org/10.1016/j.camwa.2014.04.021).
  48.   Garba, S., Gumel, A.B., Hassan, S. and Lubuma, J.M.-S, 2015, Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation, Appl. Mathematics and Computation, Vol 258, 388-403 (http://dx.doi.org/10.1016/j.amc.2015.01.088).
  49.   Lubuma, J.M.-S. and Terefe, A.Y., 2015, A nonstandard Volterra difference equation for the SIS epidemiological model, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Ser. A. Matemáticas (RACSAM), 109(2), 597-602 (http://dx.doi.org/10.1007/s13398-014-0203-5).
  50.   Barley K., A.B. Gumel, A.B. Hussaini, N. and Lubuma, J.M-S, 2016,  Mathematical Analysis of a  Model for AVL-HIV Co-endemicity, Mathematical Biosciences, Vol. 271, 80-95,        (http://dx.doi.org/10.1016/j.mbs.2015.10.008).
  51.   Chapwanya, M, Lubuma, J.M.-S. and Terefe, Y.A. 2016, Analysis and dynamically consistent nonstandard discretization for a rabies model in humans and dogs, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Vol 110 , 783-798 (http://dx.doi.org/10.1007/s13398-015-0266-y)
  52. Aderogba, A.A., Chapwanya, M., Djoko, J.K. and  Lubuma, J.M.-S.  2016, Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger equation,  International Journal of Computer Mathematics, Vol 93 (11), 1833-1844.(http://dx.doi.org/10.1080/00207160.2015.1076569).
  53. Djoko, J.K., Lubuma, J.M.-S. and  Mbehou, M. , 2016, On the numerical solution of the stationary power-law Stokes equations: A penalty finite element approach: A penalty finite element approach,  Journal of Scientific Computing, Vol 69, 1058-1082, (http://dx.doi.org/10.1007/s10915-016-0227-4)
  54. Djoko, J.K. and Lubuma, J.M.-S., 2016, Analysis of a time implicit scheme for the Oseen model driven by nonlinear slip boundary conditions, Journal of Mathematical Fluid mechanics, Vol 18, 717- 730, (http://dx.doi.org/10.1007/s00021-016-0254-9).
  55. Manyombe, L.M, Mbang, J, Lubuma, J.M.-S. and Tsanou, B., 2016, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, Mathematical Biosciences and Engineering, Vol 13 (4), 813-840 (http://dx.doi.org/10.3934/mbe.2016019)
  56. Tsanou, B, Lubuma, J.M.-S., Bowong, S. and Mbang, J, 2017,  Assessing the impact of the environmental contamination on the transmission of Ebola Virus Disease (EVD), Journal of Applied Mathematics and Computing, Vol 55, 205-243, (http://dx.doi.org/10.1007/s12190-016-1033-8)
  57. Berge, T, Lubuma, J.M-S, Moremedi, G.M., Morris, N. and R. K. Shava, R.K., 2017,  A simple mathematical model for Ebola in Africa, Journal of Biological Dynamics, Vol 11 (1), 42-74 (http://dx.doi.org/10.1080/17513758.2016.1229817)
  58. Berge, T., Bowong, S. and Lubuma, J.M.-S., 2017, Global stability of a two-patch cholera model with fast and slow transmissions, Mathematics and Computers in Simulation,  Vol 133,  142-164, (http://dx.doi.org/10.1016/j.matcom.2015.10.013) 
  59. Appadu, A.R., Djoko, J.K., Gidey, H.H. and Lubuma, J.M-S, 2017, Analysis of multilevel finite volume approximation of 2D convective Cahn-Hilliard equation, Japan Journal of Industrial and Applied Mathematics, Vol 34, 253-304, (http://dx.doi.org/10.1007/s13160-017-0239-y)
  60. Appadu, R., Lubuma, J.M-S. and Mphephu, N, 2017, Computational study of three numerical methods for some linear and nonlinear advection-diffusion-reaction problems, Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol 17, Issue no 2,114-129,(http://dx.doi.org/10.1504/PCFD.2015.10001164)
  61. Lubuma, J.M.-S. and Terefe, A.Y., 2017, Global stability of the continuous and discrete SIS-diffusion epidemiological model, Quaestiones Mathematicae – Journal of the South African Mathematical Society, Vol 40 (2), 161-176, (http://dx.doi.org/10.2989/16073606.2017.1283369).
  62. Berge, T., Bowong, S., Lubuma, J.M.-S., Manyombe, L.M. 2018, Modeling Ebola virus disease transmissions with reservoir in a complex  virus life ecology, Mathematical Biosciences and Engineering, Vol 15 (1), 21-56, (http://dx.doi.org/10.3934/mbe.2018002)
  63. Gumel, A., Lubuma, J.M.-S., Sharomi, O. and Terefe, Y.A, 2018, Mathematics of a sex-structured model for Syphilis transmission dynamics, Mathematical Methods in the Applied Sciences, Vol 41, 8488-8513 (http://dx.doi.org/10.1002/mma.4734).
  64. Berge, T.; Chapwanya, M., Lubuma, J.M.-S. and Terefe, Y.A. 2018, A mathematical model for Ebola epidemic with self-protection measures, Journal of Biological Systems, Vol 26 (1), 107-131 (http://dx.doi.org/10.1142/S0218339018500067)
  65. Berge, T, Lubuma, J.M-S., Tassé, A.J.O. and Tenkam, H.M. 2018,  Dynamics of host-reservoir transmission of Ebola with spillover potential to humans, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 14, 1–32 (https://doi.org/10.14232/ejqtde.2018.1.14)
  66. Berge, T, Tassé, A.J.O., Tenkam, H.M. and Lubuma, J.M-S., 2018, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, International J of Biomathematics, Vol 11, no. 7, 1850093 (36 pages) (https://doi.org/10.1142/S1793524518500936)
  67. Lerata, M., Lubuma, J.M.-S. and Yusuf, A., 2018, Continuous and discrete dynamical systems for the declines of honeybee colonies, Mathematical Methods in the Applied Sciences, Vol 41, 8724-8740 (https://doi.org/10.1002/mma.5093).
  68. Anguelov, R., Dukuza, K. and Lubuma, J.M.-S., 2018, Backward bifurcation analysis for two continuous and discrete epidemiological models, Mathematical Methods in the Applied Sciences, Vol 41, 8784-8798. (https://doi.org/10.1002/mma.5138).
  69. Appadu, R., Chapwanya, M, Jejeniwa, A. and Lubuma, J.M-S.  2019, An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations, International of Journal  Computer Mathematics (GCOM), Vol. 96 (10), 1993-2009 (https://doi.org/10.1080/00207160.2018.1546849).
  70. Usain, S., Hassan, A.S., Garba, S.M., Lubuma, J.M.-S., 2019, Modelling the transmission   dynamics of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with latent  immigrants. Journal of Interdisciplinary Mathematics, Vol 22 (6), 903-930. (https://doi.org/ 10.1080/09720502.2019.1692429).
  71. Manyombe, L.M., Mbang, J. M.L.,Bowong, Tsanou, B. and S., Lubuma, J. 2020,                             Mathematical analysis of a spatio-temporal model for the population ecology of anopheles  mosquito, Mathematical Methods in the Applied Sciences, Vol 43 (6), 3524-3555. (https://doi.org/10.1002/mma.6136).
  72. Tsanou, B., Kamgang, Jean C., Lubuma, J.M.-S. and Houpa Danga, D.E. 2020, Modeling pyrethroids repellency and its role on the bifurcation analysis for a bed net malaria model, Chaos, Solitons and Fractals, Vol. 136, 109809 (https://doi.org/10.1016/j.chaos.2020.109809).
  73. Anguelov, R., Banasiak, J., Bright, C., Lubuma, J.M-S. and Ouifki, R., 2020, The big unknown: the asymptomatic spread of COVID-19, Journal BIOMATH, Vol 9 (1), 1-9, COVID-19 Research Communication, (http://dx.doi.org/10.11145/j.biomath.2020.05.103.)
  74. Anguelov, R., Berge, T., Chapwanya, M., Djoko, J.K., Kama, P., Lubuma, J.M-S and Terefe, Y., 2020, Nonstandard finite difference method revisited and application to the Ebola Virus Disease transmission dynamics, Journal of Difference Equations and Applications, Vol.26, Issue 6,  818-854, (https://doi.org/10.1080/10236198.2020.1792892).
  75. Garba, S.M., Lubuma, J.M.-S. and Tsanou, B., 2020,  Modeling the Transmission Dynamics of the COVID-19 Pandemic in South Africa, Mathematical Biosciences, Vol 328, 108441, Published online (https://doi.org/10.1016/j.mbs.2020.108441).
  76. Ndongmo Teytsa, H.M., Tsanou, B., Bowong, S., and Lubuma, J.M-S., 2021, Coupling the modeling of phage-bacteria interaction and cholera epidemiological model with and without optimal control, Journal of Theoretical Biology, Vol. 512, 110537, 1-15. (https://doi.org/10.1016/j.jtbi.2020.110537).
  77. Ndongmo Teytsa, H.M., Tsanou, B., Bowong, S. and Lubuma, J., 2021, Bifurcation analysis of a phage-bacteria interaction model with prophage induction, Mathematical Medicine & Biology: A Journal of the IMA, Vol. 38 (1), 28–58, Published online. (https://doi.org/10.1093/imammb/dqaa010).
  78. Fossi, A.F, Lubuma, J.,  Tadmon, C. and  B. Tsanou, B., 2021, Mathematical modelling and nonstandard finite difference scheme analysis for the environmental and spill over transmissions of an Avian Influenza Virus model, Dynamical Systems: An International Journal, Vol. 36 (2), 212-255 (https://doi.org/10.1080/14689367.2021.1872503).
  79. Aziz-Alaoui, M.A., Lubuma, J. and Tsanou, B., 2021, Prevalence-based modelling approach of schistosomiasis: global stability analysis and integrated control assessment, Computational and Applied Mathematics, Vol 40: 24. Published online (https://doi.org/10.1007/s40314-021-01414-9)
  80. Chapwanya, M., Lubuma, J.M-S., Lutermann, H., Matusse, A., Nyabadza, F. and Terefe, Y.A. 2021, Mathematical modeling and analysis of Cannabis epidemic in a South African province, Journal of Statistics & Management Systems, Vol. 24 (8), 1627-1647. (https://doi.org/10.1080/09720510.2020.1843274).
  81. Ouemba Tasse A., Tsanou, B.,  Lubuma, J.M.S,  Woukeng, J.L. and Signing, F. , 2022, Ebola virus disease dynamics with some preventive measures : a case study of the 2018-2020 Kivu outbreak, Journal of Biological Systems, Vol. 30 (1), 113–148 (https://doi.org/10.1142/S0218339022500048).
  82. Kamgang, Jean C., Tsanou, B,· Houpa Danga, D.E. and Lubuma, JMS, 2022; Mosquito feeding preference and pyrethroids repellent eect eliminate backward bifurcation in malaria dynamics, Ricerche di Matematica  In Press:  (https://doi.org/10.1007/s11587-022-00695-4)
  83. Chapwanya, M. Lubuma, J., Terefe, Y, and Tsanou, B. 2022, Analysis of war and conflict effect on the transmission dynamics of the tenth Ebola outbreak in the Democratic Republic of Congo, Bulletin of Mathematical Biology, Vol. 84 (136), In Press. (https://doi.org/10.1007/s11538-022-01094-4). 
  84. Signing, F., Tsanou, B., Lubuma, J. and Bowong, S. 2023, Effects of periodic aerosol emission on the transmission dynamics of Neisseria Meningitis A, Mathematics and Computers in Simulation, In Press:  (https://doi.org/10.1016/j.matcom.2022.06.005).
  85. Ndongmo Teytsa, H.M., Tsanou, B., Manyombe, L.M., Lubuma, J. and  Bowong, S. 2023, On a diffusive bacteriophage dynamical model for bacterial infections, International Journal of Biomathematics, Vol. 16 (7), 2250123 (https://doi.org/10.1142/S1793524522501236).
  86. Anguelov, R. and Lubuma, J-MS 2023, Forward invariant set preservation in discrete dynamical systems and numerical schemes for ODEs: application in biosciences, Advances in Continuous and Discrete Models: Theory and Applications, (2023) 2023:38 (https://doi.org/10.1186/s13662-023-03784-2).
  87. Anguelov, R. and Lubuma, J-MS 2023, Forward invariant set preservation in discrete dynamical systems and numerical schemes for ODEs: application in biosciences, Advances in Continuous and Discrete Models: Theory and Applications, (2023) 2023:38 (https://doi.org/10.1186/s13662-023-03784-2).
  88. Lubuma, J.M-S,  Ouemba Tassé, A.J., Signing, F. and Tsanou, B. 2023, Investigating the impact of isolation, self-isolation and environmental transmission on the spread of COVID-19: case study of Rwanda, Mathematica Applicanda, Vol. 51(2), 239–271 (https://doi.org/10.14708/ma.v51i2.7212)
     
  89. Ouemba Tassé, A.J., Tsanou, B., Kwa Kum, C. and Lubuma, J. 2024, A mathematical model to study herbal and modern treatments against COVID-19, Journal of Nonlinear, Complex and Data Science. Vol. 25 (1), 79-108 (https://doi.org/10.1515/jncds-2023-0062).
  90. Ouemba Tassé, A.J., Tsanou, B., Kwa Kum, C. and Lubuma, J. 2024, A mathematical model on the impact of awareness and traditional medicine in the control of Ebola: Case study of the 2014 – 2016 outbreaks in Sierra Leone and Liberia,  IMA Journal of Applied Mathematics, In Press (https://doi.org/hxae025)(https://academic.oup.com/imamat/advance-article-abstract/doi/10.1093/imamat/hxae025/7817826?utm_source=advanceaccess&utm_campaign=imamat&utm_medium=email ) 
  91. Ouemba Tassé, A.J., Kubalasa, V., Tsanou, B. and Lubuma, J.M-S . 2025, Nonstandard finite difference schemes for some epidemic optimal control problems, Mathematics and Computers in Simulation, Vol. 228, 1-22 (https://doi.org/10.1016/j.matcom.2024.08.028).
     

Share this page